Transcriptome response of cassava leaves under natural shade
نویسندگان
چکیده
Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement.
منابع مشابه
Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz)
KT/HAK/KUP (KUP) family is responsible for potassium ion (K+) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava (Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes (MeKUPs) were identified and classified i...
متن کاملTranscriptome Analysis of Shade-Induced Inhibition on Leaf Size in Relay Intercropped Soybean
Multi-species intercropping is a sustainable agricultural practice worldwide used to utilize resources more efficiently. In intercropping systems, short crops often grow under vegetative shade of tall crops. Soybean, one important legume, is often planted in intercropping. However, little is known about the mechanisms of shade inhibition effect on leaf size in soybean leaves at the transcriptom...
متن کاملPhysiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava
Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration s...
متن کاملPhotochemical efficiency of adult and young leaves of the neotropical understory shrub Psychotria limonensis (Rubiaceae) in response to changes in the light environment.
We explored the short-term adjustment in photochemical efficiency (Fv/Fm) in adult and young leaves of the understory neotropical shrub Psychotria limonensis Krause (Rubiaceae) in response to rapid changes in the light environment. Leaves were collected from 20 individual plants growing under sun and shade conditions on Gigante Peninsula, Barro Colorado Natural Monument (Republic of Panama), du...
متن کاملReactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.
Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated ...
متن کامل